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I. Introduction

The following report summarizes the research carried out during the
recently completed phase of NASA grant NCCI-99. The work described here was
carried out by the principal investigator, James Schwing, and a graduate
research assistant, Jan Spangler, in conjunction with the SMART system design
team (Solid Modeling Aerospace Research Tool) of the Vehicle Analysis Branch at
NASA Langley.

The major effort of the past six months has been the development of
software used with the derivation of smooth 3-D surfaces from a sequence of
cross-sections. Additional work has considered on problems arising in the

creation of surfaces by extrusion and the presentation of calculated physical

properties.



I1. Minimizing Error in Surface Representation.

A. The Problen.

The basis for geometric representation used in the SMART system is the
bicubic parameterization known as the Bezier patch. Refer to Foley and
Van Dam [1] for example for a discussion of basic patch definition and manipu-
lation. The SMART system attempts to provide interfaces for the design
engineer that corresponds to natural engineering design and development tools.
Thus one of the geometric input techniques provided allows the designer to
input a sequence of cross-sections of the object under consideration. The
problem then becomes one of converting this sequence of cross-sections to a
collection of Bezier patches that reproduces the given data as accurately as
possible.

The key to this conversion lies in the calculation of Bezier curves, edges
of the Bezier patches, which approximate the cross—sectioﬁs in a way that
minimizes error. A straight forward solution to this would seem to be the
calculation of these Bezier curves via a least squares technique. However, the
process is complicated by the fact that the calculated Bezier curves are then
used as the edges of the Bezier patches that are expected to join together in a
smooth, differentiable fashion. This imposes additional interaction conditions
on the calculation of the least square Bezier curves.

Description of these additional conditions can best be seen by considering
what happens when two patches are to be joined in a differentiable fashion.

The reader is again referred to Foley and Van Dam [1] for more detail. To
summarize let Patch 1 be represented by the 16 control points Pjj ... Py, and

Patch 2 be represented by Qjj ... Q44. The conditions can now be described in




terms of these control points. Suppose that the common edge is given by the
control points P14, P24, P34, P44 in Patch 1 and by the control points Q1j,
Q21» Q31, Q41 in Patch 2. The first requirement is that Pj4 = Qi) for i = 1,
2, 3, and 4., In addition, the following relation must hold for the interior
control points: éiZ = Qi) + k (Q41 - Pj3) with k constant and i =1, 2, 3,
and 4. v

As an example let the two curves shown below in figure 1 represent a

portion of two consecutive cross-sections where each portion is represented by

P _ Q

. Figure 1




the joining of two Bezier curve segments. The condition cited above requires'

that
Ps = P4 + k (P4 - P3) and
Qs = Q4 + k (Q4 - Q3) for some k.

Since each cross-section is adjacent to at least one other cross-section the

value of k must be determined for all cross-sections simultaneously.

B. The Theory.

Assume that the Bezier curve segments which approximate a given cross-
section are ordered and that the Bezier control points for the previous
segments have already been determined. That is, in each cross-section there is
a previously determined Bezier curve segment, such as Pj, ... , P4, to which a
new Bezier curve segment, such as P4, ..., P7, will be joined. The special
case of curve segments where there is no previous information will be treated
separately.

Figure 2 below represents the segment to be calculated taken from say the
jth cross-section. The given data points represent points of the jth cross-
section. Interpolation conditions for the Bezier curve require that the first
and fourth control points of this portion correspond to the first and last data
points. Thus the values for POj and Plj are easily determined. By assumption
stated above the control points of the previous segment are known, specifically
c1j- The requirements noted in the previous section state that the control

L)



point COj must satisfy with constant k:

Coj = Poj + k (Pgj - c1j) for all cross-sections j.

Figure 2

The least squares technique is now applied to find those values of k and
Clj that minimize the error made by approximating the data points by the Bezier
curves. To solve the least squares problem this portion of the curve is
parameterized by chord length along the cross-section data points. Let those
distances be represented by sjj. Further let 15, Loj and L) represent the

distances and dj and Dj represent the direction vectors necessary to define the

s



control points as follows:
c1j = POj - lj dj
Coj = Poj + Loj d;
Clj = Plj + Llj Dj
and where it is known that LOj =k 15.

The least square solution then leads to both of the following types of

equations.
Eqn. 1: ajk+bjLjy= cj
N N
Eqn. 2: > [dj k + ej L1jl = 2 £5
J-l J'al
where

ni~-1
aj= 31y [i‘é{ (1 - 817)3 s34] [dx0j dx1j + dyoj dy1jl

st 4. 42 2
bj= 3 [é‘_{ (1 - 83702 8451 [df15 + 43151

ny=-1 :
cj = iil.’ (1 - s34 sy [x35 de1j + yij dy14])

ni-1
- {tl (1 - sij)3 s%j (1 +2 sij)}[x0j dyx1j + ¥0j dy1jl
1=

ni-—1
- {]%' (1 - sij) sé"_j (3-2 sij)}[xnjj dxlj + ynJ.J' dylj]

ns-1
j= 3 l% [é (1 - Sij)4 S%J][d)z‘o:l + d%oj]




eJ-a aj

?251 2
3= 3 (25 (- s19)% sy [xig dx05 + v13 dy05

ni-1
—[tl' (1 - sij)4 84 j (1 +2 Sij)][ij dej + ¥0j dij]
1=
ni-1 9
-[12; (1- 85702 835 (3~ 2 84§)] [an-j dx0j + ¥njj dyojl }

Eqn.s 1 and 2 can be solved for all j by the following:

N N
k = Z[fj - (aJcJ)/bJ] / Z[dJ - a_%/bJ]
i=1 i=}

Llj = [CJ - (aj-k)] / bj . )

For the special case that considers the first segment of each cross-
section, the interaction condition weakens. This is a consequence of the fact
that these patches will have no continuity condition on their leading edge.
Thus the ratio constraint previously described no longer applies and the values

for L may be calculated at both ends of the curve.

Fortunately, the solution of the resulting least squares problem for this
case leads to virtually the same coefficients, aj, bj, Cj» dj, e, fj as listed
above. One need only set 1 to 1. The solution to the equations in this

special case is given by:

Loj = [bj*£5 - aj-cjl / [bydj - af]

| s Llj = [chJ - anJ] / [deJ - a%] .



C. The Results.

As implemented these routines will take as input a collection of cross-
sections and produce a best least squares approximant satisfying the conditions
necessary for the building of a smooth Bezier surface. The appendix includes -

the code used for implementing these ideas.

III. Solids Via Extrusion.

Here the basic idea is that a given solid may be defined by the act of
dragging a fixed, user-defined cross-section along another user-defined path.
No major restrictions are placed upon either the cross-section, which may be
any planar curve, or the path, which may be any 3-D curve. Both are repre-
sented internally by the standard SMART format of connected Bezier curve
segments. As in the previous section these Bezier curves are to be used to
generate the corresponding surface patches of the solid being defined. This
research addressed the problem of providing the same continuity and shape in

the resulting solid as that of the underlying extrusion path.

There are two aspects to the problem mentioned above. First, when
segments of the underlying extrusion curve join in a continuous fashion, it is
necessary to join the resulting surfaces in a continuous fashion. Secondly,
the shape of the "tube" generated by the extrusion should accurately reflect
the user-defined cross-section. The solution to the first half of this problem

ig discussed in the latter part of this chapter.



With respect to the second half of the problem, the solution is not
immediately obvious. Unfortunately, the process is not "well defined." That
is, it is not possible to completely determine all of the final parameters from
the two curves described above as the user input. In effect, there is one
remaining parameter left to be freely picked by the software.

To this point all existing automatic techniques that have been employed to
determine this final parameter lead to an undesirable twist in the extruded
surface in some cases. That is, the resulting surface appears to twist so that
the inside is totally constricted. Figure 3 below illustrates this condition.

Currently we are still working on a solution to this problem.

. Figure 3



The key to the first half of the problem again rests in the proper
determination of the constant ratio k mentioned in the previous section. The
solution proposed below not only will keep the continuity of the joining
surfaces the same as that of the underlying extrusion curve, it also attempts
to reproduce as faithfully as possible the shape of the underlying extrusion

curve. In order to do that the following aesthetic was adopted:

Aesthetic: If the underlying extrusion curve is either linear or

circular reproduce the result exactly.

Note first that Bezier patch control points are known at the join, since
they are given precisely by the user-defined cross-section placed at the join
and oriented so that it is normal to the extrusion curve. Thus the solution to
this problem reduces to identifying the appropriate values of the patch control
points immediately preceding and following this join.

Let the extrusion curve preceding the join have the control points Cj, Co,
C3, C4. Similarly let C4, Cs5, Cg, C7 represent the control points of the curve
segment following the join. Define Mj and My as the "midpoints" of these

respective curve segments.

>

M} = (Cp +3Cp+3C3+C4) /8
Mo-= (C4 +3C5+3C+0Cy) /38

Finally define W to be the center of the circle containing the three points M,
Mz, C4. Note that if these point are collinear, then W cannot be defined but
that we have the simple case of reproducing the new control points in a linear

fashion, If on the other hand the points are not collinear, then the center W

10



is used to compute an appropriate radius of curvature for each of the given
control points, P, in the user-defined cross-section. This radius is then used
to produce the patch control points preceding and following the join the
correspond to P. Specifically, we determine the previously mentioned constant
k from the underlying curve as follows:

Eqn. 3 k= || C3C |1/ [1CCs |l
By using this k in the determination of all interior preceding and following
Bezier points, the appropriate continuity class is assured.

Let P, and Pg be the interior control points that precede and follow P in
the definition of the Bezier surfaces meeting at the join. Notice that the
following relations must hold:

Eqn. 4 ’ Pp =P + 1] (C3 - Cy)

Eqn. 5 Pg = P + ry (Cs - C4).

As mentioned above, it is desired for continuity sake that these points share
the common k value, that is:
k= || PP |1/ 1] PP Il
The definitions of Pp and Pg above show that
k=ry || C3C4 || /2 |lC4Cs [l
= /) (1 C3C I/ 11 & Cs D
=-(r1/r2) k.

This implies that rj = ra. At this point it is possible to combine this
requirement and Eqn.s 3, 4, and 5 with the previously mention aesthetic to
derive Qalues for Pp and Pg. Basically the center of curvature W is used with
these facts via:

. Linear Case: rp =ry =1

Non-linear Case: rp=rp=||PW]|| /|| GWI|.

11



Equations for the calculation of W are straight forward in both two and

three dimensions and can be found in any calculus text.

IV, Display of Physical Properties.

Calculation of physical properties is an important step in the analysis of
aerospace vehicles. During the process of conceptual design such calculations
must be relatively efficient without sacrificing significant accuracy so that a
multiplicity of ideas can be tried rapidly with a reasonable confidence in the
results. Previous research under this grant produced mathemaﬁical software
provided accuracy beyond the required tolerances and which proved to be up to
four times faster. Work over the last six months on this topic involved
developing an appropriate user interface for the display of this information,

It has turned out that it is natural to represent the geometry for
aerospace systems in tree data structures, These trees capture the hier-
archical relation between system components and their subassemblies. Since the
physical properties are calculated for each of the basic subassemblies and then
propagated through the hierarchy to the more complex components. This infor-
mation combined with the fact that the designer is already interacting with
this hierarchy through the mouse dictated the following design of the inter-
face.

Once the designer selects the calﬁulation of physical properties, a dual
viewport display is presented. One of the viewports contains a representation

of the current hierarchy. From this viewport the user may use the mouse to

12



move around the data structure and select a particular component or subassembly
for which the properties should be presented. The selected information is then
immediately displayed in the other viewport. In a sense this allows the

designer to browse the model each time design changes have been made.

13
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ROUTINES USED IN THE GENERATION OF MINIMUM ERROR BEZIER
CURVES CORRESPONDING TO A SET OF CROSS SECTIONS.

34 gen_bz
111 seqg_info
151 get_dvect
203 bz_minerrl
267 ln_vect
304 setscl
337 extrap
373 tancalc
410 sep_seg
452 solvel
495 solve2
542 get_cpts

INCLUDE FILE DEPENDENCIES

<sgimath.h>
../include.dir/act_data. h

DEFINED FUNCTONS AND VARIABLES

sqr(X) (X) * (X)

MAXCPCSP1 11 /* represents MAXCPCS + 1 */
MAXCPCSP2 12 /* represents MAXCPCS + 2 */
ROUTINE: gen_bz
PURPOSE: driving routine for the generatlon of minimum error

Bezier control points for Bezier curves approximating
a set of cross sections

CALLING PROCEDURE/
DECLARATIONS:

gen_bz (xp,yp,zp,ifl,ncs,npcs,cpts, err)

float xp[][MAXCS],yp(]([MAXCS],zp([],*cpts([](MAXCS]([4](3];
int ifl[][MAXCS],ity,ncs,npcs(], *err;

[ ]

INPUT VARIABLES: '

Xp,yp - [MAXCPCS][MAXCS], arrays containing the cross
section curves

zp - [MAXCS], array containing the z position of the
given cross section

ifl - [MAXPPCS][MAXCS], array containing an indicator



Jan 16 12:48 1987 xsect_to_bez.d Page 2

for curve segment break points and continuity
conditions

ncs - actual number of cross sections used

npcs - [MAXCS), array listing the actual number of points
used in each cross section

OUTPUT VARIABLES:

cpts - [MAXCPCS][MAXCS]([4]{2], array containing the x,y
coordinates of the 4 Bezier control points for each
err - if non-zero indicates an error exit condition
due to inconsistant data
curve and each cross section '

EXTERNAL VARIABLES: none

GLOBAL VARIABLES: none

INTERNAL VARIABLES:

n - [MAXCPCSP2][MAXCS], array containing the actual number
of points in each curve segment

nseg -~ the actual number of curve segments for any cross
section

cs, segno - counters

brkpt - [MAXCPCSP1][MAXCS], array containing the index
to xp,yp for the break points between the Bezier
curve segments

dvect_in,dvect_out ~ [MAXCPCSPl][MAXCS)[2], array containi
the x,y components of the incomming/outgoing
tangent directions at each break point

X,y - [MAXPPCS][MAXCS], array containing the coordinates c
a selected curve segment for each cross section

do,dl - [MAXCS)[2], array containing the x,y components
for the start/end derivative direction on a given
curve segment over all cross sections

lambda - [MAXCS][{2], array containing the length of each
of hte control points from the start/end points
of a given curve segment over all cross sections

lambda_old - [MAXCS], array containing the length of the
end control point of the previous section stored
over all cross sections

ROUTINES INVOKED:

L
AUTHOR:

DATE:

seg_info
get_dvect
sep_seg
bz_minerrl
get_cpts

James Schwing, 0ld Dominion University

12-24-86
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REVISIONS:

DATES:

ROUTINE: seg_info

PURPOSE: routine used to obtain information about the curve
segments that will be used to approximate the cross
gsections

CALLING PROCEDURE/
DECLARATIONS:

seg_info(ifl,ncs,npcs,n,&nseg,brkpt,&err)

int ifl[][MAXCS],ncs,npcs[],nt][MAXCS],*nseg,brkpt[][MAXC

*err;
INPUT VARIABLES:
ifl,ncs,npcs - as described in "gen_bz" above

OUTPUT VARIABLES:
n,nseg,brkpt,err - as described in "gen bz" above

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none

INTERNAL VARIABLES:
cs,seq,1i,j - counters

segcent - track the number of curve segments from cross
section to cross section

ROUTINES INVOKED: none

AUTHOR: James Schwing, 0ld Dominion University
DATE: ' 12-24-86

REVISIONS:

DATES:

KROUTINE: get_dvect

PURPOSE:

routine used to produce incoming and outgoing tangent
directions for each curve segment break point

CALLING PROCEDURE/
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DECLARATIONS:
get_dvect(xp,yp,ncs,nseg,n,ifl,brkpt,dvect_in,dvect_out)

float xp[][MAXCS],yp[](MAXCS],
dvect_in[][MAXCS][2],dvect_out[][MAXCS][2];
int ncs,nseg,n[][MAXCS],if1[][MAXCS],brkpt(][MAXCS];

INPUT VARIABLES:
Xp,YP,ncs,nseg,n,ifl,brkpt - as described in “gen_bz"

OUTPUT VARIABLES:
dvect_in,dvect_out - as described in "gen bz"

EXTERNAL VARIABLES: none
GLOBAL VARAIBLES: none

INTERNAL VARIABLES:

a,b - [4], array containing tangent approximation info

ct,st - x,y components of the tangent vector

v - [2], temporay vector

len ~ vector length

xel,xe2,yel,ye2 - extrapolated points

cs,seqg,i - counters

nl - the number of points used to define the incoming
curve segment at a given break point

n2 - the number of points used to define the outgoing
curve segment at a given break point

ibase - index to xp,yp for the current break point

ROUTINES INVOKED:

tancalc

1n_vect

extrap

setscl
AUTHOR: James Schwing, 0ld Dominion University
DATE: 12-24-86
REVISIONS:
DATES:
+ROUTINE: bz_minerrl
PURPOSE: routine used to calculate the length of the Bezier

control points along their tangent vectors so that
a minimum least square error for a given curve segment
over all cross sections between the approximating
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Bezier curve and the cross section data is obtained

CALLING PROCEDURE/
DECLARATIONS:
bz_minerrl(x,y,do,dl,ncs,n,segno,lambda_old,lambda):

float x([][MAXCS],y[][MAXCS],d0(](2],d1[](2],lamda_old[],*lambda(](2]
int ncs,n{][MAXCS],segno;

INPUT VARIABLES:
x,y,40,d1,ncs,n,segno,lambda_old - as described in "“gen bz"

OUTPUT VARIABLES:
lambda - as described in "gen_bz"

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none

INTERNAL VARIABLES:

dist - chord length for this segment.
s - array for chord length position of data defining
this segment.
the second index represents powers of s.
scomp - (1 - 8)
: the second index represents powers.
! sx2n3d - (3 - 2 * g)
. sxX2pl - (2 * s + 1)
11, 12, 13 - accumulators for the LHS of the matrix
equation.
rl, r2, r3, r4, r5, r6 - accumulators for the RHS
of te matrix equation.
a, b, ¢, 4, £ - matrix entries used to find the
least squares solution.
r - common ratio reqired for surface continuity,
found in the solution of the matrix system.
totl, tot2 -~ used in solution of the matrix system.
n_cs - number of points for this segment and this .
cross section.
nml - (n_cs - 1)
nm2 - (n_cs = 2)

ROUTINES INVOKED:

sqr
sqrt
solvel
. solve2
AUTHOR: James Schwing, 0ld Dominion University

—- DATE: 12-24-86
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REVISIONS:
DATES:
ROUTINE: 1n_vect
PURPOSE: routine used to find the length of a 2-D vector
CALLING PROCEDURE/
DECLARATIONS:

1n_vect(v)
float v[2];

INPUT VARIABLES:
v = [2], Vector for which the length will be calculated

OUTPUT VARIABLES:
ln_vect - function value, the length

EXTERNAL VARIALBLES: none
GLOBAL VARIABLES: none

INTERNAL VARAIBLES:
len - temporary storage for length

ROUTINES INVOKED:

sqr
sqrt
AUTHOR: James Schwing, 0ld Dominion University
DATE: 12-24-86
REVISIONS:
DATES:
ROUTINE: setscl
PURPOSE: routine which modifies start/end tangent derivatives
*CALLING PROCEDURE/
- DECLARATIONS: :
setscl (&ct, &st)

float *ct,*st;
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INPUT VARIABLES: none

OUTPUT VARIABLES:
ct,st - %,y conponents of the tangent vector

EXTERNAL VARIABLES: none

GLOBAL VARIABLES: none

INTERNAL VARIABLES: none

ROUTINES INVOKED: none

AUTHOR: James Schwing, 0l1d Dominion University

DATE: 12-24-86

REVISIONS:

DATES:

ROUTINE: extrap

PURPOSE: routine used to extrapolate points of a curve segment

beyond (or prior to) its end points

CALLING PROCEDURE/
DECLARATIONS:
float extrap(a,b,c)

float a,b,c;

INPUT VARIABLES:
a,b,c - input coordinates from the curve segment; x or y

OUTPUT VARIABLES:
extrap - function value, projected coordinate value

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none

INTERNAL VARIABLES:

. d - temporary storage

ROUTINES INVOKED: none

AUTHOR: James Schwing, 0ld Dominion University
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DATE: 12-24-86

REVISIONS:

DATES:

ROUTINE: tancalc

PURPOSE: routine used to calculate the tangent at the break point:

of curve segments in the cross sections

CALLING PROCEDURE/
DECLARATIONS:
tancalc (a,b, &dcos, &dsin)

float a[4],b[4],*dcos, *dsin;

INPUT VARIABLES:

a,b - [4], differences of x,y curve values about the
break point

OUTPUT VARIABLES:
dcos,dsin ~ x,y components of the tangent vector

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none
ROUTINES INVOKED:
sqgr
sqrt
fabs
AUTHOR: James Schwing, 0ld Dominion University
DATE: . 12-24-86
REVISIONS:
DATES:
ROUTINE: sep_seg
PURPOSE: routine used to separate all information concerning

an indicated curve segment in the appropriate arrays
for minimum error processing

CALLING PROCEDURE/



Jan 16 12:48 1987 xsect_to_bez.d Page 9

DECLARATIONS:
sep_seg(xp,yp,dvect_in,dvect_out,brkpt, segno,nes,x,y,d0,dl)

float xp(][MAXCS],yp{][MAXCS],dvect_in[][MAXCS][2],dvect_out[][MAXCS][2]
*x[ ] [MAXCS],*y[] [MAXCS], dO[][2] di(i(2]:
int brkpt[][MAXCS] segno,ncs;

INPUT VARIABLES:

Xp,yYp,dvect_in,dvect_out,brkpt,segno,ncs - as described
in "gen | bz"

OUTPUT VARIABLES:
X,y,d0,d1 - as described in "“gen_bz"

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none

INTERNAL VARIABLES:
cs,i - counters

istart,iend - markers for the start/end subscripts of
the current curve segment in xp,yp

ROUTINES INVOKED: none
AUTHOR: James Schwing, 0ld Dominion University
| DATE: 12-24-86
REVISIONS:
DATES:
ROUTINE: solvel
PURPOSE: . routine used to solve the least squares equations without

constraint for the values representing the length of the
Bezier control points from their respective end points

CALLING PROCEDURE/
DECLARATIONS:

solvel(a,b,c,d,f,ncs,n,x,y, lanbda)

float af(],b(],c[]1,d[),£[],x[][MAXCS],y[][MAXCS],*lambda[][2];
. int ncs n[][MAXCS],

INPUT VARIABLES:

a,b,c,4,f - as described in "bz_minerrl®
ncs,n,x,y ~ as described in "gen_ bz"
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OUTPUT VARIABLES:
lambda - as described in "gen_bz"

EXTERNAL VARIABLES: none
GLOBAL VARIABLES: none

INTERNAL VARIABLES:
cs -~ counter

det - partial determinant of the least squares matrix
v - temporary vector

ROUTINES INVOKED:

sqr
1n_vect
AUTHOR: James Schwing, 0l1d Dominion University
DATE: 12-24-86
REVISIONS:
DATES:
ROUTINE: solve2
PRUPOSE: routine used to solve the least squares equations

constrained so that "lambda{0] / lambda_old" is
constant over all cross sections; first solving for

nrn the appropriate value of that ratio then "lambda"
the values representing the length of the Bezier control
points from their respective end points

CALLING PROCEDURE/
DECLARATIONS:

solve2(a,b,c,d,f,ncs,segno,n,lambda_old,x,y,lambda)

float a[],b{],c(],d4(],£f[],lambda_old[], x{][MAXCS],y[][MAXCS],
*lambda[][Z].

int ncs, segno,n[ ] [MAXCS];

INPUT VARIABLES:

a,b,c,d,f - as described in "bz_minerrl"
ncs,segno,n,lambda_old,x,y - as “described in "gen_bz"

<
OUTPUT VARIABLES:
lambda - as described in "gen_bz"

EXTERNAL VARIABLES: none



l
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GLOBAL VARIABLES: none

INTERNAL VARIABLES:
totl,tot2 - accumulators !
r - ratio described above {
cs,segpl - counters |
v = temproary vector

| ROUTINES INVOKED:

| 1n_vect
; AUTHOR: James Schwing, 014 Dominion University
| DATE: 12-24-86
REVISIONS:
DATES::
ROUTINE: get_cpts
PURPOSE: routine which converts the “lambda" lengths of Bezier

control points to coordinates for a given curve
, segment over all cross sections

" CALLING PROCEDURE/
DECLARATIONS:

get_cpts(xp,yp,2p,d0,dl1,brkpt,segno,ncs, lambda, cpts)

*cpts[][MAXCS](4](3]:
int  brkpt([][MAXCS],segno,ncs;

INPUT VARIABLES:
. Xp,yp,d0,dl,brkpt, segno,ncs,lambda - as described in

‘ R " gen—b 2z "
- OUTPUT VARIABLES:
cpts - as described in “gen_bz"

EXTERNAL VARIABLES: none

GLOBAL VARIABLES: none

INTERNAL VARIABLES:
. cs,1 -~ counters

istart,iend - indecies for the start/end points of a
given curve segment

ROUTINES INVOKED: none

float xp[]([MAXCS],yp(][MAXCS],zp(],d0(](2]),d1(](2],lambda[(](2]
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AUTHOR: James Schwing, 0ld Dominion University
DATE: 12-24-86

REVISIONS:

DATES:

.
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/*

L)

.

ROUTINES USED IN THE GENERATION OF MINIMUM ERROR BEZIER
CURVES CORRESPONDING TO A SET OF CROSS SECTIONS.

46 gen_bz

95 seg_info

145 get_dvect

319 bz_minerrl

424 ln_vect

440 setscl

460 extrap

476 tancalc

511 sep_seg

551 solvel

584 solve2

639 get_cpts */
/* --------------------------------------------------------------- */

#include <sgimath.h>
#include <gl.h>
#include "../include.dir/act_data.h"

#define sqr(X) (X) * (X)
#define MAXCPCSP1l 11
#define MAXCPCSP2 12

seg_info();
get_dvect();
sep_seg();

bz minerri():
get_cpts():
solvel();
solve2();

float extrap():
tancalc();
setscl();

float 1n_vect():

gen_bz(xp,yp,zp,ifl,ncs,npcs,cpts,err)

float xp(][MAXCS],yp([]([MAXCS],zp[],cpts[][MAXCS][4][3];
int i£f1[])[MAXCS],ncs,npes|[], *err;

{ int n[MAXCPCSP1l] [MAXCS],nseg,brkpt [MAXCPCSP1l] [MAXCS],cs,segno;
float dvect_in[MAXCPCSP1][MAXCS]([2],dvect out[MAXCPCSP1][MAXCS][2],
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X[MAXPPCS] [MAXCS],y[MAXPPCS] [MAXCS],dO[MAXCS][2],d1[MAXCS][2],
lambda_old[MAXCS],lambda[MAXCS][2];

/* separate basic curve information */
seg_info(ifl,ncs,npcs,n, &nseq,brkpt,err);

if (err i= 0)

printf(“Inconsistant data; Bezier calculation terminated\n");
return(*err) ;

/* get tangent vectors for ALL curve */
/* segment end points */
get_dvect (xp,yp,ncs,nseqg,n, ifl,brkpt,dvect_in,dvect_out);
for (cs8 = 0 ; ¢s < ncs ; cs++)
lambda_old([cs] = 1;
- /* loop over each curve segment */
for (segno = 0 ; segno < nseg ; segno++) { :

/* separate the curve segment info */
sep_seqg(xp,yp,dvect_in,dvect_out,brkpt,segno,ncs,x,y,d0,dl);

. /* minimize the approximation error */
: bz_minerrl(x,y,d0,dl,ncs,n,segno,lambda_old, lambda) ;

for (cs = 0 ; c8 < ncs ; cs++)
lambda_old[cs] = lambda[cs][1];

/* save the new control points */
get_cpts(xp,yp,zp,do,dl,brkpt,segno,ncs,lambda,cpts);

} /* end loop over curve segments */

seg_info(ifl,ncs,npcs,n,nseg,brkpt,err)
int 1f1[][MAXCS],ncs,npcs[],n([][MAXCS], *nseq,brkpt[][MAXCS], *err;
{ int cs,seqg,segcnt,i,j;

~ kerr = 0;

/* loop over all cross sections */
for (cs8 = 0 ; ¢cs < ncs ; cs++) |
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-
o\
-e

/* loop over all point of a given */

/%* cross section
for (1 = 0 ; 1 < npecs[cs] ; i++) (

/* a break point between curve

if (ifl{i])([cs] !=
brkpt[seg][cs]
n(seg](cs] = 3:
seg++;
J=2;

9

i

}

else /* not a segment end point */
J++;

ni{seg](cs] = 0;
segent = seqg ~ 1;

if (cs == Q) /*
*nseg = segcnt; /*
else 1if (*nseg != segcnt) {
*err = -1;

insure that each cross section

*/

*/

/* segments is ID'd; save that info */

*/

has the same number of segments */

printf("* ERROR: cross section #%d has a different number of curve\n"

cs);
printg (" segments than cross section #1\n");

} /* end loop over points */

} /* end loop over cross sections */

get_dvect (xp,yp,ncs,nseg,n,ifl,brkpt,dvect_in,dvect_out)

float xp[][MAXCS],yp[][MAXCS],dvect_in[][MAXCS][2],dvect_out[][MAXCS][2];
int ncs,nseg,n{] (MAXCS],i£f1([][MAXCS],brkpt(][MAXCS];

A

float a[4],b[4],ct,st,v[2],len,xel, xe2,yel,ye2;
int cs,i,seq,nl,n2,ibase;



Jan 16 13:19 1987 xsect_to_bez.s Page 4

/* loop over all cross sections #*/
for (ca = 0 ; c8 < ncs ; cs++) |

/* loop over all segment end points
for (seg = 0 ; seg <= nseg ; seg++) (

nl = nisegl(cs]:; /* # of points in prior segment
n2 = n{seg + l}[cs}:; /* # of points in following segment
ibase = brkpt([seg][cs]: /* subscript of the breakpoint

/* CASE: continuous derivative */
/* neither curve linear */

if ((nl > 2) && (n2 > 2) && (ifl[ibase]cs] == 1)) {

a[0] = xp[ibase - 1][cs] - xp[ibase -~ 2][cs];
a(l] = xp(ibase](cs] - xp[ibase - 1]{cs];

af[2] = xp[ibase + 1]{cs] - xp[ibase]{cs];

a(3] = xp(ibase + 2]{cs] - xp[ibase + 1l][cs);
b[0] = yp[ibase - 1][cs] - yp([ibase - 2][cs]:
b[l] = yp[ibase]([cs] - yp[ibase - 1][cs];

b(2] = yp(ibase + 1]([cs] - yp([ibase][cs]:

b[3] = yp(ibase + 2)[cs] - yp[ibase + 1]([cs]:
tancalc(a,b, &ct, &st) ;

dvect_in(seg][cs] (0] = ~-ct;

dvect_in[seg][cs][1l] = -st;

dvect_out({seg][cs]{0] = ct;

dvect_out([seg](cs][l] = st;
}

, /* CASE: continuous derivative #*/
/* prior curve linear */
else if ((nl == 2) && (ifl[ibase][cs] == 1)) {

v[0] = xp[ibase - 1l][cs] - xp[ibase]([cs]:
v[{1l] = yp{ibase - 1][cs] - yp([ibase]([cs];
len = 1ln vect(v);

ct = v[0] / len;

st = v[1l] / len;

dvect_in[seg](cs] (0] = ct;
dvect_in(seg][cs][1l] = st;
dvect_out(seg]{cs][0] = -ct;
dvect_out[seg][(cs][l] = ~-st;

/* CASE: continuous derivative */
/* following curve linear */
else if ((n2 == 2) && (ifl[ibase][cs] == 1)) (

v{0] = xp[ibase + 1][cs] - xp[ibase][cs]:
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v(l]) = yp(ibase + 1][c8] - yp[ibase][cs]:;
len = 1ln_vect(v):;

ct = v[0] / len;

st = v[1] / len;

dvect_in([seg](cs][0] = -ct;
dvect_in[seg][cs][1l] = -st;

dvect_ _out{seg](cs][0] = ct;
dvect_out[seg][cs][l] = gst;

else {

if (n1 == 2) {

v[0] = xp[ibase - 1]!c

/* all remaining CASES have */
/* discontinuous derivative */

/* incoming derivative calculation */
VA prior curve linear */

- xp[ibase]{cs];

len = 1ln_vect(v);

dvect_in(seqgl(cs](0

}[es)

v(l] = yp(ibase - 1](cs] - yp(ibase](cs]:
]

dvect_in[seg]{cs][1l]

else if (seg != 0) {(

= v(0] / len;
= v(1l] / len;

/* incomming derivative calculation */
/* prior curve non-linear */

xel = extrap(xp[ibase][cs],xp(ibase - 1]([cs],xp(ibase - 2][cs])
xe2 = extrap(xel,xp{ibase](cs],xp[ibase - 1][cs]):
yel = extrap(yp([ibase](cs],yp(ibase - 1](cs],ypl[ibase - 2]([cs])
ye2 = extrap(yel,yp[ibase]{cs],yp(ibase - 1][cs]):
a(0] = xp[ibase -~ 1](cs] - xp[ibase =~ 2](cs]:;
a[l]) = xp[ibase][cs] - xp[ibase - 1][cs];
af(2] = xel - xp[ibase][cs]:
af3] = xe2 - xel;
. b[0] = yp[ibase - 1][cs] - yp[ibase - 2][cs];
b[l]) = yp(ibase](cs] -~ yp(ibase =~ 1][cs],
b(2] = yel - yp[ibase]{cs];
b[3] = ye2 - yel;
tancalc(a,b, &ct,&st) ;
dvect_in[seg)[cs][0] = -ct;
dvect_in(seg]([cs]([1l] = -st;

if (n2 == 2) {

/* outgoing derivative calculation */
/* following curve linear */
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v(0] = xp[ibase + 1l]({cs] - xp[ibase][cs];
v(1l] = yp[ibase + 1][cs] - yp[ibase][cs]:
len = 1ln vect(v):

dvect_out(seg](cs]([0]
dvect_out[seg][cs][1]

= v[0] / len;
= v{l] / len;

/* outgoing derivative calculation *
/* following curve non-linear *

else if (seg != nseqg) (

xel = extrap(xp(ibase][cs],xp[ibase+1l][cs],xp[ibase+2]([cs]));
xe2 = extrap(xel,xp[ibase](cs],xp[ibase+l][cs]):
yel = extrap(yp[ibase][cs],yp[ibase+l](cs],yp[ibase+2][cs]):
yYe2 = extrap(yel,yp(ibase][cs],yp[ibase+l]([cs]);

a[o]
afl]
af2]
af3]
b[0]
b[1]
b[2]
b(3]

= xel - xe2;

= yp[ibase][cs] - xel;

= xp[ibase + 1l]{cs] - xp{ibase][cs]
= xp[ibase + 2][cs] - xp[ibase + 1]
= yel - ye2;

= yp[ibase][cs] ~ yel;

= yp([ibase + 1]){cs] - yp[ibase][cs];

= yp(ibase + 2](cs] - yp{ibase + 1][cs];

H
fes);

tancalc(a,b, &ct, &st);

dvect_out{seg]}[cs][0] = ct;
dvect_out[seg]([cs])[1l] = st;

}

} /* end loop over break points */

/* reset the first and last */
/* derivative values as required */

ct = dvect_out[0]([cs][0];
st = dvect_out[0]}[cs][1];
setscl(&ct, &st) ;

dvect_out[0]([cs8][0] = ct;
dvect out{0])[cs][1l] = st;

ct
st

dvect_in[nseg}(cs][0];
dvect_in({nsegj{cs](1]};

setscl (&ct, &st) ;

« dvect_in[nseg][cs][0]
dvect_in(nseg]{cs]([1]

= ct;
= gt;

} /* end loop over cross sections */
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bz_minerrl(x,y,d0,dl,ncs,n,segno,lambda_old, lambda)

flo
int

{

at x[)[MAXCS],y[][MAXCS],d0(])[2],d1[])([2],1lambda_o0ld[],lambda[][2]:
ncs,n(] [MAXCS],segno; .

float dist,s[MAXCS][5],scomp[MAXCS](5],sx2m3 [MAXCS], sx2pl[MAXCS],11,12,13
rl,x2,r3,r4,r5,r6,r,totl,tot2,totald,
a[MAXCS],b[MAXCS],c[MAXCS],d{MAXCS], f[MAXCS];

int i,es,p,n_cs,nml,nm2;

for (¢cs = 0 ; cs < ncs ; cs++) ( /* loop over all cross sections */
totald = 0;

n_cs = n{segno + l)}{cs];
nml = n cs -1;
nm2 = nml - 1;

switch (n_cs) { /* number of points in the cross =*/
/* section */
case 2: /* straight line => no error */
break:;
default: : /* error possible in all other cases
/* find chord lengths of data */
/* positions & related functions */
/* required for matrix set up */

for (i = 0 ; 1 < nml ; i++) {
- dist = sqrt(sqr(x[i+l](cs] - x[i](cs])
. + sqr(y(i+l]{cs] - y[i][cs])):
totald += dist;
s[i][0] = totald;

for (1 = 0 ; 1 < nm2 ; i++) (
s[i][0] /= totald;
scomp(i][0] = 1 - s[i][0];
sx2m3{i] = 3 - 2 * g[i][0);
sx2pl[i] = 1 + 2 * g[i][0];

for (p=1:; p
s{i}{p] = sl
scomp([1][(p]

< 4 ; p+t+) |
lip - 1} * 5{i][0); .
scomp(1][(p-1] * scomp(i][0]:

-
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11
12
13
rl
r2
r3
r4
r5
ré

/* set up the least squares matrix */
/* with information from this */
/* cross section */

for (1 =0 ; i < nm2 ; i++) {

11
12
13
rl

r2
r3
r4

r5
ré

}

a[cs]

b{cs]
c[cs]

d[cs]

flcs]

+=
<+
==
4=

‘=
+m=
=

+m=
-

break;

}

scomp([i]([3]
scomp[i][2]
scomp({i)[1)]
scomp(i][1]

scomp([i]
scomp(i]
scomp(i

]
scomp{i)
scomp(i]

* F % %

* %

s[i](1];

s(i](2]:

s[1])(3):

s{1){0] * (%[i + 1l)[cs] * dO[cs][0]
+ y{i + 1]}{cs] * d0[{cs][1]):
s(1][0] * sx2pl[i]:

s(i][(2] * sx2m3([i];

8(1){1] * (x[i + 1](cs] * dl[cs][0]
+ y[i + 1)[ecs] * dl[cs][1]);
s[i][1] * sx2pl[i]):;

s[1][3] * sx2m3([1i];

3 % 12 * (dO(cs]1[0] * dl[cs]([0] + dO[cs][1] * dl{cs][1])
* lambda_old[cs];
3 % 13 * (sqr(dl(cs][(0]) + sar(dl(cs][1])):
r4d - r5 * (x[{0][cs] * dl[cs][0] + y[O0][cs] * dl[ecs][1])
- r6 * (x[(nml][cs] * dl(cs][0] + y[nml][cs] * dl(cs][1l]):
3 % 11 * (sqr(dO[cs][0]) + sqgr(dO[cs][1]))
* gqr(lambda old[cs]):

(rl - r2 * (x[O][csT * d0[ecs][0) + y[O])[cs] * AO[cs][1]
- r3 * (x[nml][cs] * A0[cs][0] + y[nml](cs] * dO[cs][1]

)
))

* lambda_old{cs]:

} /* end loop over cross sections #*/

if (segno == Q)
.solvel(a,b,c,d,f,ncs,n,x,y,lambda);

else

/* solve the first curve segment */
/* no prior "r" constraint */

/* solve other curve segments . *
* use common "r" at each start point *

solve2(a,b,c,d, f,ncs,segno,n,lambda_old,x,y,lambda);
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float 1ln_vect(v)
float v([2];
{ float len;
len = sqrt(sqr(v([0]) + sqr(v(1l])):

return(len);

setscl(ct,st)
float *ct, *st;
{
if (fabs(*ct) < .05) {
*ct = 0;
*gt = ]1;
}
else 1f (fabs(*st) < .05) {

*ct = 13
*gst = 07

float extrap(a,b,c)
float a,b,c;

{ float A4;
d=3%* (a~-Db) + c;

return 4;
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tancalc (a,b,dcos,dsin)
float a[4],b[4],*dcos, *dsin;
{ float ao0,bo,tl,t2,w2,w3;

w2 = fabs(a[2] * b[3] - a[3]
w3 = fabs(a[0] * b[1l] - a[l]

a0 = w2 * a[l] + w3 * af2];
bO = w2 * b(1l] + w3 * b(2];

tl = ggqrt(a0 * a0 + b0 * b0);

/* If the curve is a straight line, then
/* Db[ij/a[i] = b[i+l]/a[i+1l] = tan(a)
/* for all i = 0,1,2
/* and thus a0 = b0 = 0
/* treat this case separately.
if ((a0 == 0) && (b0 == 0)) {
t2 = gqrt(sqr(a(0]) + sqr(b(0])):
*dcos = a[0] / t2;
*dsin = b[0] / t2;
}
else (
*dcos = a0 / tl;
*dsin = b0 / tl;

sep_seg(xp,yp,dvect_in,dvect_out,brkpt,segno,ncs,x,y,do,dl)

float xp[][MAXCS],yp[][MAXCS],dvect_in({][MAXCS](2],dvect_out([][MAXCS][2],
) x([][(MAXCS],y[][MAXCS],d0(][2],d1(][2]:

ink brkpt(] [MAXCS],segno,ncs;

{ int cs,istart,iend,i,;

/* loop over all cross sections */
for (cs = 0 ; cs < ncs ; cs++) |
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/* subscripts for the start and end */
/* of the current curve segment in */
/* this cross section */

istart = brkpt(segno](cs}];

iend = brkpt(segno + 1])[cs];

j =o0;

/* loop over points of this segment */
/* copy to "x" & "y" */
for (1 = istart ; 1 <= iend ; i++) (

x{31lcs] = xp(i][cs];
y(3illcs] = yp[i)(cs]);
J++;

} /* end loop over points */

/* copy derivatives for this segment */

d0[cs][0] = dvect_out{segno](cs][0]:
do{cs]([1l] = dvect out[segno][cs][l],
dl(cs][0] = dvect_in(segno + 1][cs][0]:;
dl{cs]([1l] = dvect _in(segno + 1j({cs]{1]:

} /* end loop ove cross sections #*/

solvel(a,b,c,d,£f,ncs,n,x,y, lambda)

float a[],b(],c(]1,4[]),£f[],x[][MAXCS]),y[][MAXCS], lambda(][2];
int ncs n[][MAXCS],

{ int «cs;
float det,v([2];

/* loop over cross sections */
for (cs = 0 ; cs < ncs ; cs++) {

/* CASE: non-linear curve segment */

/* solve the matrix */
if (n[1])(cs] ! Yy {
det = d[cs] * b[cs] - sqr(a[cs]):
lambda[cs][0] = (f[cs] * blcs] = c[cs] * a[cs]) / det;
) lambda[cs])[1] = (c[cs] * d[cs] - f[cs] * a[cs]) / det;
}
/* CASE: linear segment */
else {
v[0]) = xX[1][cs] - x[0])[ecs]:
v(1l] = y[1l][cs] - y[0][cs]:
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lambda[cs][0] = 1ln_vect(v) / 3.;
lambda[cs])[1] = lambda[cs][0];
)

} /* end loop over cross sections */

solve2(a,b,c,d,f,ncs,segno,n,lambda_old,x,y,lambda)

float af{],b{],c(],d[],£[],lambda_old[],x[][MAXCS],y[][MAXCS], lambda[][2];
int ncs, segno,n{ ] [MAXCS];

{ float totl,tot2,r,v(2};
int cs,segpl;

totl = 0;
tot2 = 0;
segpl = segno + 1;

/* solve first for the required common */ i
/* ratio */

/* loop over all cross sections #*/
for (cs = 0 ; cs8 < ncs ; cs++) {

if (n[segpl](cs] l= 2) {

totl += f[cs] - (a[cs] *c(cs]) / blcs]:
tot2 += d[cs] -~ sqgr(a[cs]) / b[cs]:

} .

} /* end loop over cross sections */
r = totl / tot2;

/* use "r" to generate the first control */
/* point, then solve for the other */

/* loop over all cross sections */
for (cs = 0 ; c8 < ncs ; cs++) |

/%* first control point */
lambda[cs][0] = r * lambda_old[cs];

. /* second control point */
. /* CASE: non-linear segment */

if (n{segpl][cs
lanmbdafcs]([1

Cd bl

cs]) - (afcs] * r)) / blcs];

/* CASE: linear segment */
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else {
v({0] = x[1l][cs] - x[0][cs];
v[{1l] = y(1](cs] - y[0][cs];
lambda(cs][1l] = 1ln_vect(v) / 3.;
)

} /* end loop over cross sections */

/* ---------------------------------------------------------------
get_cpts(xp,yp,Zp,do,dl,brkpt,segno,ncs,1ambda,cpts)

float xp[][MAXCS],yp[]([MAXCS],zp[],d0(]([2],d1[]([2],lambda[]([2],
cpts[][MAXCS])[4][3];
int Dbrkpt{][MAXCS],segno,ncs;

{ int cs,istart,iend,i;

/%* store the control points of this */
/* segment for each cross section */

/* loop over each cross section #*/
for (cs = 0 ; cs8 < ncs ; cs++) (

istart = brkpt(segno][cs]:
iend = brkpt{segno + 1]{cs]:

cpts(segno]{cs](0]{0]
cpts{segno){cs][0][1]
cpts[segno]{c8](1]1[0]
cpts{segno](cs]{1]([1]
cpts[segno]{cs8][2][0]
cpts{segno]l{cs][2]([1]
cpts{segno](cs](3](0]
cpts({segno][cs](3]1([1]

xp(istart]{cs];
yp(istart]([cs]:
xp{istart][cs] + lambda[cs][0] * dO[cs]

xp[iend][cs] + lambda[cs][1l] * dl[cs](0O
yp[iend][cs] + lambda(cs][1l] * dl[cs][1
xp{iend]}{cs};
yp(iend] (cs];

for (1 =0 ; 1 < 4 ; i++)
cpts([segno](cs](i](2] = zp([cs]:

} /* end loop over cross sections */

s

[0];

yp{istart]{cs] + lambda{cs]{0] * dO{cs][1l];
17
17



